Structural Equation Models

Description

Widely used in social and behavioral sciences, structural equation models (SEM) provide a highly valuable framework for integrating measurement and mediation analysis into statistical modeling. An SEM allows linking latent (or unobserved) variables to observed ones in order to address measurement error. It also permits the specification of multiple dependent variables simultaneously and an assessment of mediation based on the decomposition of total effects into direct and indirect effects. This course emphasizes the intuition behind SEMs and their applications. Examples, exercises, and code (R or Stata) will be provided. Knowledge of R (or Stata) and linear regression is required.

Agenda

Day 1: Introduction, Effect Decomposition, and Mediation Analysis

Day 2: Latent Variables and Measurement Models

Day 3: General SEMs and Extensions

Instructor

Dr. Shawn Bauldry is an Associate Professor of Sociology and a Core Faculty in Advanced Methods at Purdue University. He received a Ph.D. in Sociology and an M.S. in Statistics from the University of North Carolina at Chapel Hill. He has published papers on a range of topics related to Structural Equation Models and has co-authored a book on Confirmatory Factor Analysis in the Sage QASS series. He has taught graduate-level statistics courses for over 10 years and has developed numerous workshops and courses on SEMs, causal inference, and multilevel and longitudinal analyses. He is a recipient of the Purdue Sociology Department Graduate Mentoring Award.

Class Time

TBA, 2023. Zoom class with recordings available.

Registration

Regular tuition: $575. Early-bird tuition (register by June 1, 2023): $525. Alumni and student tuition (register by June 1, 2023): $475. To audit the first class for free, please register here. To register for the full course, please click the button below.